NLP

[SimCSE 논문 리뷰] SimCSE: Simple Contrastive Learning of Sentence Embeddings

코딩무민 2022. 4. 1. 13:44
반응형

1. 핵심 요약

Simple Contrastive Sentence Embedding Framework

Unsupervised method

  • input을 받고 그 input 자체를 contrastive objective로 예측

⇒ 같은 문장을 Dropout을 applying 한 후 두 번 반복해서 넣음 → 이렇게 나온 2개의 임베딩 = positive pairs

⇒ 다른 sentence(negatives)를 넣고 positive를 다시한번 predict

  • dropout만 사용

⇒ minimal data augmentation 효과

⇒ dropout을 제거하면 representation collapse 생김

Supervised method

NLI 데이터 사용

  • entailment pairs : Positive
  • contradiction pairs : Negative

성능 증명

(1) alignment between semantically-related positive pairs

(2) improve uniformity

  • contrastive learning objective “flattens” the singular value distribution of the sentence embedding space

Evaluation

  • STS data로 성능평가
  • 기존 best results보다 4.2% and 2.2% improvement

Conclusion

  • Contrastive Learning Objective가 pre-trained embedding의 anisotropic spacer가 uniform하게 함 (*uniformity: 임베딩에서 얼마나 넓은 공간을 활용하고 있는지)
  • aligns positive pairs ← supervised일 때

 

2. 논문 링크

https://arxiv.org/abs/2104.08821

 

SimCSE: Simple Contrastive Learning of Sentence Embeddings

This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, wi

arxiv.org

 

3. 설명 링크 

https://coding-moomin.notion.site/SimCSE-Simple-Contrastive-Learning-of-Sentence-Embeddings-3504b6c38fae4021a59446ea66a3a2d0

 

SimCSE: Simple Contrastive Learning of Sentence Embeddings

1. Abstract & Introduction

coding-moomin.notion.site

 

반응형